Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.610
Filtrar
1.
Elife ; 122024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661340

RESUMO

Irisin, released from exercised muscle, has been shown to have beneficial effects on numerous tissues but its effects on bone are unclear. We found significant sex and genotype differences in bone from wildtype (WT) mice compared to mice lacking Fndc5 (knockout [KO]), with and without calcium deficiency. Despite their bone being indistinguishable from WT females, KO female mice were partially protected from osteocytic osteolysis and osteoclastic bone resorption when allowed to lactate or when placed on a low-calcium diet. Male KO mice have more but weaker bone compared to WT males, and when challenged with a low-calcium diet lost more bone than WT males. To begin to understand responsible molecular mechanisms, osteocyte transcriptomics was performed. Osteocytes from WT females had greater expression of genes associated with osteocytic osteolysis and osteoclastic bone resorption compared to WT males which had greater expression of genes associated with steroid and fatty acid metabolism. Few differences were observed between female KO and WT osteocytes, but with a low-calcium diet, the KO females had lower expression of genes responsible for osteocytic osteolysis and osteoclastic resorption than the WT females. Male KO osteocytes had lower expression of genes associated with steroid and fatty acid metabolism, but higher expression of genes associated with bone resorption compared to male WT. In conclusion, irisin plays a critical role in the development of the male but not the female skeleton and protects male but not female bone from calcium deficiency. We propose irisin ensures the survival of offspring by targeting the osteocyte to provide calcium in lactating females, a novel function for this myokine.


Assuntos
Fibronectinas , Camundongos Knockout , Osteócitos , Animais , Feminino , Osteócitos/metabolismo , Masculino , Camundongos , Fibronectinas/metabolismo , Fibronectinas/genética , Fatores Sexuais , Reabsorção Óssea/genética
2.
Front Immunol ; 15: 1383113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646530

RESUMO

It is well established that inflammatory processes in the vicinity of bone often induce osteoclast formation and bone resorption. Effects of inflammatory processes on bone formation are less studied. Therefore, we investigated the effect of locally induced inflammation on bone formation. Toll-like receptor (TLR) 2 agonists LPS from Porphyromonas gingivalis and PAM2 were injected once subcutaneously above mouse calvarial bones. After five days, both agonists induced bone formation mainly at endocranial surfaces. The injection resulted in progressively increased calvarial thickness during 21 days. Excessive new bone formation was mainly observed separated from bone resorption cavities. Anti-RANKL did not affect the increase of bone formation. Inflammation caused increased bone formation rate due to increased mineralizing surfaces as assessed by dynamic histomorphometry. In areas close to new bone formation, an abundance of proliferating cells was observed as well as cells robustly stained for Runx2 and alkaline phosphatase. PAM2 increased the mRNA expression of Lrp5, Lrp6 and Wnt7b, and decreased the expression of Sost and Dkk1. In situ hybridization demonstrated decreased Sost mRNA expression in osteocytes present in old bone. An abundance of cells expressed Wnt7b in Runx2-positive osteoblasts and ß-catenin in areas with new bone formation. These data demonstrate that inflammation, not only induces osteoclastogenesis, but also locally activates canonical WNT signaling and stimulates new bone formation independent on bone resorption.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Inflamação , Osteogênese , Receptor 2 Toll-Like , Via de Sinalização Wnt , Animais , Camundongos , Osteogênese/efeitos dos fármacos , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Inflamação/metabolismo , Porphyromonas gingivalis , Lipopolissacarídeos , Osteoblastos/metabolismo , Osteoblastos/imunologia , Osteócitos/metabolismo , Reabsorção Óssea/metabolismo , Osteoclastos/metabolismo , Osteoclastos/imunologia , Masculino , Proteínas Wnt/metabolismo , Crânio , Camundongos Endogâmicos C57BL
3.
Discov Med ; 36(182): 494-508, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38531790

RESUMO

BACKGROUND: Mandibular distraction osteogenesis (MDO) is a highly effective method for bone regeneration, commonly employed in treating craniofacial defects and deformities. Osteocytes sense mechanical forces in the pericellular space, relay external stimuli to biochemical changes, and send signals to other effector cells, including bone marrow mesenchymal stem cells (BM-MSCs), to regulate bone resorption and formation. Piezo1 potentially affects the secretion signal molecules of bone cells under mechanical stretch. The primary aim of this study was to enhance our comprehension of the molecular biology underlying this therapeutic approach and to identify specific signaling molecules that facilitate bone formation in response to stretch forces. METHODS: Mechanical stretching was applied to negative controls and Piezo1 knockdown osteocyte-like MLO-Y4 cells. Alkaline phosphatase and Alizarin Red S staining were used to survey the osteogenic potential of BM-MSCs. The production and secretion content of adenosine triphosphate (ATP) was measured using ATP content determination analysis. Pathway-related and osteo-specific genes and proteins were evaluated using real-time polymerase chain reaction (RT-PCR), Western blots, and immunofluorescence. Mitochondrial organization was examined with a transmission electron microscope. RESULTS: The conditioned medium of stretch-exposed MLO-Y4s significantly upregulated osteogenesis-related indicators of BM-MSCs (p < 0.001). The upregulation of BM-MSC osteogenesis was associated with ATP release from osteocytes. Mechanically induced calcium transfer and transcriptional coactivator with PDZ-binding motif (TAZ) nuclear translocation mediated by Piezo1 could promote mitochondrial fission and ATP release. Osteocytes detected stretch forces through Piezo1, triggering calcium influx, TAZ nuclear translocation, and ATP production. CONCLUSIONS: The stretch stimulation of Piezo1 induces calcium influx, which in turn promotes calcium-related TAZ nuclear translocation, changes in mitochondrial dynamics, and the release of ATP in osteocytes. This signaling cascade leads to an up-regulation in the osteogenic capacity of BM-MSCs. Mitochondrial energy metabolism of mechanosensitive protein Piezo1-dependent and ATP release may provide a new effective intervention method for mechanically related bone remodeling.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Osteogênese/fisiologia , Osteócitos/metabolismo , Cálcio/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular/fisiologia , Células da Medula Óssea/metabolismo
4.
Exp Gerontol ; 189: 112408, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521178

RESUMO

BACKGROUND: Active vitamin D analog eldecalcitol is clinically applied in treatment of postmenopausal osteoporosis. This study aims to determine the role of eldecalcitol in the protection of osteocytes from senescence and the associated ferroptosis. METHODS: The MLO-Y4 osteocytes were exposed to D-gal inducing senescence. The ovariectomized (OVX) mice treated with D-gal using as an aging inducer were intraperitoneally injected with eldecalcitol. The multiplexed confocal imaging, fluorescence in situ hybridization and transmission electron microscopy were applied in assessing osteocytic properties. Immunochemical staining and immunoblotting were carried out to detect abundance and expression of molecules. RESULTS: The ablation of vitamin D receptor led to a reduction in amounts of osteocytes, a loss of dendrites, an increase in mRNA expression of SASP factors and in protein expression of senescent factors, as well as changes in mRNA expression of ferroptosis-related genes (PTGS2 & RGS4). Eldecalcitol reversed senescent phenotypes of MLO-Y4 cells shown by improving cell morphology and density, decreasing ß-gal-positive cell accumulation, and down-regulating protein expression (P16, P21 & P53). Eldecalcitol reduced intracellular ROS and MDA productions, elevated JC-1 aggregates, and up-regulated expression of Nrf2 and GPX4. Eldecalcitol exhibited osteopreserve effects in D-gal-induced aging OVX mice. The confocal imaging displayed its improvement on osteocytic network organization. Eldecalcitol decreased the numbers of senescent osteocytes at tibial diaphysis by SADS assay and attenuated mRNA expression of SASP factors as well as down-regulated protein expression of senescence-related factors and restored levels of ferroptotic biomarkers in osteocytes-enriched bone fraction. It reduced 4-HNE staining area, stimulated Nrf2-positive staining, and promoted nuclear translocation of Nrf2 in osteocytes of mice as well as inhibited and promoted protein expression of 4-HNE and Nrf2, respectively, in osteocytes-enriched bone fraction. CONCLUSIONS: The present study revealed the ameliorative effects of eldecalcitol on senescence and the associated ferroptosis of osteocytes, contributing to its preservation against osteoporosis of D-gal-induced senescent ovariectomized mice.


Assuntos
Ferroptose , Osteócitos , Vitamina D/análogos & derivados , Camundongos , Animais , Osteócitos/metabolismo , Hibridização in Situ Fluorescente , Fator 2 Relacionado a NF-E2/metabolismo , Vitamina D/metabolismo , RNA Mensageiro/metabolismo
5.
J Bone Miner Res ; 39(3): 298-314, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38477790

RESUMO

Osteocytes sense and respond to mechanical force by controlling the activity of other bone cells. However, the mechanisms by which osteocytes sense mechanical input and transmit biological signals remain unclear. Voltage-sensitive calcium channels (VSCCs) regulate calcium (Ca2+) influx in response to external stimuli. Inhibition or deletion of VSCCs impairs osteogenesis and skeletal responses to mechanical loading. VSCC activity is influenced by its auxiliary subunits, which bind the channel's α1 pore-forming subunit to alter intracellular Ca2+ concentrations. The α2δ1 auxiliary subunit associates with the pore-forming subunit via a glycosylphosphatidylinositol anchor and regulates the channel's calcium-gating kinetics. Knockdown of α2δ1 in osteocytes impairs responses to membrane stretch, and global deletion of α2δ1 in mice results in osteopenia and impaired skeletal responses to loading in vivo. Therefore, we hypothesized that the α2δ1 subunit functions as a mechanotransducer, and its deletion in osteocytes would impair skeletal development and load-induced bone formation. Mice (C57BL/6) with LoxP sequences flanking Cacna2d1, the gene encoding α2δ1, were crossed with mice expressing Cre under the control of the Dmp1 promoter (10 kb). Deletion of α2δ1 in osteocytes and late-stage osteoblasts decreased femoral bone quantity (P < .05) by DXA, reduced relative osteoid surface (P < .05), and altered osteoblast and osteocyte regulatory gene expression (P < .01). Cacna2d1f/f, Cre + male mice displayed decreased femoral strength and lower 10-wk cancellous bone in vivo micro-computed tomography measurements at the proximal tibia (P < .01) compared to controls, whereas Cacna2d1f/f, Cre + female mice showed impaired 20-wk cancellous and cortical bone ex vivo micro-computed tomography measurements (P < .05) vs controls. Deletion of α2δ1 in osteocytes and late-stage osteoblasts suppressed load-induced calcium signaling in vivo and decreased anabolic responses to mechanical loading in male mice, demonstrating decreased mechanosensitivity. Collectively, the α2δ1 auxiliary subunit is essential for the regulation of osteoid-formation, femur strength, and load-induced bone formation in male mice.


The ability of bone to sense and respond to forces generated during daily physical activities is essential to skeletal health. Although several bone cell types contribute to the maintenance of bone health, osteocytes are thought to be the primary mechanosensitive cells; however, the mechanisms through which these cells perceive mechanical stimuli remains unclear. Previous work has shown that voltage sensitive calcium channels are necessary for bone to sense mechanical force; yet the means by which those channels translate the physical signal into a biochemical signal is unclear. Data within this manuscript demonstrate that the extracellular α2δ1 subunit of voltage sensitive calcium channels is necessary for load-induced bone formation as well as to enable calcium influx within osteocytes. As this subunit enables physical interactions of the channel pore with the extracellular matrix, our data demonstrate the need for the α2δ1 subunit for mechanically induced bone adaptation, thus serving as a physical conduit through which mechanical signals from the bone matrix are transduced into biochemical signals by enabling calcium influx into osteocytes.


Assuntos
Osteócitos , Osteogênese , Camundongos , Masculino , Feminino , Animais , Osteócitos/metabolismo , Osteogênese/genética , Cálcio/metabolismo , Microtomografia por Raio-X , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Fêmur/diagnóstico por imagem , Fêmur/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo
6.
Nat Commun ; 15(1): 2529, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514612

RESUMO

Transcortical vessels (TCVs) provide effective communication between bone marrow vascular system and external circulation. Although osteocytes are in close contact with them, it is not clear whether osteocytes regulate the homeostasis of TCVs. Here, we show that osteocytes maintain the normal network of TCVs by transferring mitochondria to the endothelial cells of TCV. Partial ablation of osteocytes causes TCV regression. Inhibition of mitochondrial transfer by conditional knockout of Rhot1 in osteocytes also leads to regression of the TCV network. By contrast, acquisition of osteocyte mitochondria by endothelial cells efficiently restores endothelial dysfunction. Administration of osteocyte mitochondria resultes in acceleration of the angiogenesis and healing of the cortical bone defect. Our results provide new insights into osteocyte-TCV interactions and inspire the potential application of mitochondrial therapy for bone-related diseases.


Assuntos
60489 , Osteócitos , Osteócitos/metabolismo , Células Endoteliais , Osso e Ossos , Mitocôndrias
7.
Bone ; 182: 117050, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38367924

RESUMO

Postmenopausal osteoporosis (PMOP) is a common kind of osteoporosis that is associated with excessive osteocyte death and bone loss. Previous studies have shown that TNF-α-induced osteocyte necroptosis might exert a stronger effect on PMOP than apoptosis, and TLR4 can also induce cell necroptosis, as confirmed by recent studies. However, little is known about the relationship between TNF-α-induced osteocyte necroptosis and TLR4. In the present study, we showed that TNF-α increased the expression of TLR4, which promoted osteocyte necroptosis in PMOP. In patients with PMOP, TLR4 was highly expressed at skeletal sites where exists osteocyte necroptosis, and high TLR4 expression is correlated with enhanced TNF-α expression. Osteocytes exhibited robust TLR4 expression upon exposure to necroptotic osteocytes in vivo and in vitro. Western blotting and immunofluorescence analyses demonstrated that TNF-α upregulated TLR4 expression in vitro, which might further promote osteocyte necroptosis. Furthermore, inhibition of TLR4 by TAK-242 in vitro effectively blocked osteocyte necroptosis induced by TNF-α. Collectively, these results suggest a novel TLR4-mediated process of osteocyte necroptosis, which might increase osteocyte death and bone loss in the process of PMOP.


Assuntos
Osteócitos , Osteoporose Pós-Menopausa , Receptor 4 Toll-Like , Fator de Necrose Tumoral alfa , Feminino , Humanos , Necroptose , Osteócitos/metabolismo , Osteoporose Pós-Menopausa/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Nat Metab ; 6(3): 531-549, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38409606

RESUMO

Ageing increases susceptibility to neurodegenerative disorders, such as Alzheimer's disease (AD). Serum levels of sclerostin, an osteocyte-derived Wnt-ß-catenin signalling antagonist, increase with age and inhibit osteoblastogenesis. As Wnt-ß-catenin signalling acts as a protective mechanism for memory, we hypothesize that osteocyte-derived sclerostin can impact cognitive function under pathological conditions. Here we show that osteocyte-derived sclerostin can cross the blood-brain barrier of old mice, where it can dysregulate Wnt-ß-catenin signalling. Gain-of-function and loss-of-function experiments show that abnormally elevated osteocyte-derived sclerostin impairs synaptic plasticity and memory in old mice of both sexes. Mechanistically, sclerostin increases amyloid ß (Aß) production through ß-catenin-ß-secretase 1 (BACE1) signalling, indicating a functional role for sclerostin in AD. Accordingly, high sclerostin levels in patients with AD of both sexes are associated with severe cognitive impairment, which is in line with the acceleration of Αß production in an AD mouse model with bone-specific overexpression of sclerostin. Thus, we demonstrate osteocyte-derived sclerostin-mediated bone-brain crosstalk, which could serve as a target for developing therapeutic interventions against AD.


Assuntos
Doença de Alzheimer , Humanos , Masculino , Feminino , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/uso terapêutico , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/uso terapêutico , Osteócitos/metabolismo , Osteócitos/patologia , beta Catenina/metabolismo , beta Catenina/uso terapêutico , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/uso terapêutico , Via de Sinalização Wnt , Cognição , Envelhecimento
9.
Bone ; 181: 117026, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38325651

RESUMO

Disuse osteoporosis is a prevalent complication among patients afflicted with rheumatoid arthritis (RA). Although reports have shown that the antirheumatic drug iguratimod (IGU) ameliorates osteoporosis in RA patients, details regarding its effects on osteocytes remain unclear. The current study examined the effects of IGU on osteocytes using a mouse model of disuse-induced osteoporosis, the pathology of which crucially involves osteocytes. A reduction in distal femur bone mass was achieved after 3 weeks of hindlimb unloading in mice, which was subsequently reversed by intraperitoneal IGU treatment (30 mg/kg; five times per week). Histology revealed that hindlimb-unloaded (HLU) mice had significantly increased osteoclast number and sclerostin-positive osteocyte rates, which were suppressed by IGU treatment. Moreover, HLU mice exhibited a significant decrease in osteocalcin-positive cells, which was attenuated by IGU treatment. In vitro, IGU suppressed the gene expression of receptor activator of NF-κB ligand (RANKL) and sclerostin in MLO-Y4 and Saos-2 cells, which inhibited osteoclast differentiation of mouse bone marrow cells in cocultures. Although IGU did not affect the nuclear translocation or transcriptional activity of NF-κB, RNA sequencing revealed that IGU downregulated the expression of early growth response protein 1 (EGR1) in osteocytes. HLU mice showed significantly increased EGR1- and tumor necrosis factor alpha (TNFα)-positive osteocyte rates, which were decreased by IGU treatment. EGR1 overexpression enhanced the gene expression of TNFα, RANKL, and sclerostin in osteocytes, which was suppressed by IGU. Contrarily, small interfering RNA-mediated suppression of EGR1 downregulated RANKL and sclerostin gene expression. These findings indicate that IGU inhibits the expression of EGR1, which may downregulate TNFα and consequently RANKL and sclerostin in osteocytes. These mechanisms suggest that IGU could potentially be used as a treatment option for disuse osteoporosis by targeting osteocytes.


Assuntos
Cromonas , Osteoporose , Sulfonamidas , Fator de Necrose Tumoral alfa , Animais , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Osteócitos/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Linhagem Celular , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/farmacologia , Ligantes , Osteoclastos/metabolismo , NF-kappa B/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Ligante RANK/metabolismo
10.
Bone ; 181: 117028, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309412

RESUMO

INTRODUCTION: Osteocytes modulate bone adaptation in response to mechanical stimuli imparted by the deforming bone tissue in which they are encased by communicating with osteoclasts and osteoblasts as well as other osteocytes in the lacuna-canalicular network through secreted cytokines and chemokines. Understanding the transcriptional response of osteocytes to mechanical stimulation in situ could identify new targets to inhibit bone loss or enhance bone formation in the presence of diseases like osteoporosis or metastatic cancer. We compared the mechanically regulated transcriptional response of osteocytes in trabecular bone following one or three days of controlled mechanical loading. METHODS: Porcine trabecular bone explants were cultured in a bioreactor for 48 h and subsequently loaded twice a day for one day or 3 days. RNA was isolated and sequenced, and the Tuxedo suite was used to identify differentially expressed genes and pathway analysis was conducted using Ingenuity Pathway Analysis (IPA). RESULTS: There were about 4000 differentially expressed genes following in situ culture relative to fresh bone. One hundred six genes were differentially expressed between the loaded and non-loaded groups following one day of loading compared to 913 genes after 3 d of loading. Only 45 of these were coincident between the two time points, indicating an evolving transcriptome. Clustering and principal component analysis indicated differences between the loaded and non-loaded groups after 3 d of loading. DISCUSSION: With sustained loading, there was a nine-fold increase in the number of differentially expressed genes, suggesting that osteocytes respond to loading through sequential activation of downstream genes in the same pathways. The differentially expressed genes were related to osteoarthritis, osteocyte, and chondrocyte signaling pathways. We noted that NFkB and TNF signaling are affected by early loading and this may drive downstream effects on the mechanobiological response. Moreover, these genes may regulate catabolic effects of mechanical disuse through their actions on pre-osteoclasts in the bone marrow niche.


Assuntos
Osso Esponjoso , Osteócitos , Animais , Suínos , Osteócitos/metabolismo , Transcriptoma/genética , Osso e Ossos , Osteoblastos , Estresse Mecânico
11.
Adv Sci (Weinh) ; 11(12): e2307388, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233202

RESUMO

Ferroptosis is a necrotic form of iron-dependent regulatory cell death. Estrogen withdrawal can interfere with iron metabolism, which is responsible for the pathogenesis of postmenopausal osteoporosis (PMOP). Here, it is demonstrated that estrogen withdrawal induces iron accumulation in the skeleton and the ferroptosis of osteocytes, leading to reduced bone mineral density. Furthermore, the facilitatory effect of ferroptosis of osteocytes is verified in the occurrence and development of postmenopausal osteoporosis is associated with over activated osteoclastogenesis using a direct osteocyte/osteoclast coculture system and glutathione peroxidase 4 (GPX4) knockout ovariectomized mice. In addition, the nuclear factor erythroid derived 2-related factor-2 (Nrf2) signaling pathway is confirmed to be a crucial factor in the ferroptosis of osteocytic cells. Nrf2 regulates the expression of nuclear factor kappa-B ligand (RANKL) by regulating the DNA methylation level of the RANKL promoter mediated by DNA methyltransferase 3a (Dnmt3a), which is as an important mechanism in osteocytic ferroptosis-mediated osteoclastogenesis. Taken together, this data suggests that osteocytic ferroptosis is involved in PMOP and can be targeted to tune bone homeostasis.


Assuntos
Ferroptose , Osteoporose Pós-Menopausa , Camundongos , Humanos , Animais , Feminino , Osteócitos/metabolismo , Osteoporose Pós-Menopausa/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estrogênios/metabolismo , Ferro/metabolismo
12.
Biomater Sci ; 12(4): 919-932, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38231154

RESUMO

During bone formation, osteoblasts are embedded in a collagen-rich osteoid tissue and differentiate into an extensive 3D osteocyte network throughout the mineralizing matrix. However, how these cells dynamically remodel the matrix and undergo 3D morphogenesis remains poorly understood. Although previous reports investigated the impact of matrix stiffness in osteocyte morphogenesis, the role of matrix viscoelasticity is often overlooked. Here, we report a viscoelastic alginate-collagen interpenetrating network (IPN) hydrogel for 3D culture of murine osteocyte-like IDG-SW3 cells. The IPN hydrogels consist of an ionically crosslinked alginate network to tune stress relaxation as well as a permissive collagen network to promote cell adhesion and matrix remodeling. Two IPN hydrogels were developed with comparable stiffnesses (4.4-4.7 kPa) but varying stress relaxation times (t1/2, 1.5 s and 14.4 s). IDG-SW3 cells were pre-differentiated in 2D under osteogenic conditions for 14 days to drive osteoblast-to-osteocyte transition. Cellular mechanosensitivity to fluid shear stress (2 Pa) was confirmed by live-cell calcium imaging. After embedding in the IPN hydrogels, cells remained highly viable following 7 days of 3D culture. After 24 h, osteocytes in the fast-relaxing hydrogels showed the largest cell area and long dendritic processes. However, a significantly larger increase of some osteogenic markers (ALP, Dmp1, hydroxyapatite) as well as intercellular connections via gap junctions were observed in slow-relaxing hydrogels on day 14. Our results imply that fast-relaxing IPN hydrogels promote early cell spreading, whereas slow relaxation favors osteogenic differentiation. These findings may advance the development of 3D in vivo-like osteocyte models to better understand bone mechanobiology.


Assuntos
Hidrogéis , Osteócitos , Camundongos , Animais , Hidrogéis/metabolismo , Osteócitos/metabolismo , Osteogênese , Colágeno/metabolismo , Alginatos
13.
Sci Adv ; 10(3): eadi4298, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38232158

RESUMO

Bone is one of the most common sites of tumor metastases. During the last step of bone metastasis, cancer cells colonize and disrupt the bone matrix, which is maintained mainly by osteocytes, the most abundant cells in the bone microenvironment. However, the role of osteocytes in bone metastasis is still unclear. Here, we demonstrated that osteocytes transfer mitochondria to metastatic cancer cells and trigger the cGAS/STING-mediated antitumor response. Blocking the transfer of mitochondria by specifically knocking out mitochondrial Rho GTPase 1 (Rhot1) or mitochondrial mitofusin 2 (Mfn2) in osteocytes impaired tumor immunogenicity and consequently resulted in the progression of metastatic cancer toward the bone matrix. These findings reveal the protective role of osteocytes against cancer metastasis by transferring mitochondria to cancer cells and potentially offer a valuable therapeutic strategy for preventing bone metastasis.


Assuntos
Neoplasias Ósseas , Osteócitos , Humanos , Osteócitos/metabolismo , Osso e Ossos , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias , Microambiente Tumoral
14.
Nat Commun ; 15(1): 890, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291059

RESUMO

Type 2 diabetes (T2D)-related fragility fractures represent an increasingly tough medical challenge, and the current treatment options are limited. Mechanical loading is essential for maintaining bone integrity, although bone mechano-responsiveness in T2D remains poorly characterized. Herein, we report that exogenous cyclic loading-induced improvements in bone architecture and strength are compromised in both genetically spontaneous and experimentally-induced T2D mice. T2D-induced reduction in bone mechano-responsiveness is directly associated with the weakened Ca2+ oscillatory dynamics of osteocytes, although not those of osteoblasts, which is dependent on PPARα-mediated specific reduction in osteocytic SERCA2 pump expression. Treatment with the SERCA2 agonist istaroxime was demonstrated to improve T2D bone mechano-responsiveness by rescuing osteocyte Ca2+ dynamics and the associated regulation of osteoblasts and osteoclasts. Moreover, T2D-induced deterioration of bone mechano-responsiveness is blunted in mice with osteocytic SERCA2 overexpression. Collectively, our study provides mechanistic insights into T2D-mediated deterioration of bone mechano-responsiveness and identifies a promising countermeasure against T2D-associated fragility fractures.


Assuntos
Diabetes Mellitus Tipo 2 , Osteócitos , Animais , Camundongos , Osso e Ossos , Cálcio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Osteoblastos/metabolismo , Osteócitos/metabolismo
15.
Adv Sci (Weinh) ; 11(2): e2305842, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37967351

RESUMO

Bone metastases are a common cause of suffering in breast and prostate cancer patients, however, the interaction between bone cells and cancer cells is poorly understood. Using a series of co-culture, conditioned media, human cancer spheroid, and organ-on-a-chip experiments, this study reveals that osteocytes suppress cancer cell proliferation and increase migration via tumor necrosis factor alpha (TNF-α) secretion. This action is regulated by osteocyte primary cilia and associated intraflagellar transport protein 88 (IFT88). Furthermore, it shows that cancer cells block this mechanism by secreting transforming growth factor beta (TGF-ß), which disrupts osteocyte cilia and IFT88 gene expression. This bi-directional crosstalk signaling between osteocytes and cancer cells is common to both breast and prostate cancer. This study also proposes that osteocyte inhibition of cancer cell proliferation decreases as cancer cells increase, producing more TGF-ß. Hence, a positive feedback loop develops accelerating metastatic tumor growth. These findings demonstrate the importance of cancer cell-osteocyte signaling in regulating breast and prostate bone metastases and support the development of therapies targeting this pathway.


Assuntos
Neoplasias Ósseas , Neoplasias da Próstata , Masculino , Humanos , Osteócitos/metabolismo , Cílios , Próstata , Neoplasias Ósseas/metabolismo , Fator de Crescimento Transformador beta/metabolismo
16.
Sci Rep ; 13(1): 21173, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040893

RESUMO

Iron overload negatively affects bone mass and strength. However, the impact of iron excess on osteocytes-important bone cells for mechanotransduction and remodeling-is poorly understood. Herein, we examined the effects of iron exposure on osteocytes during their maturation process. We discovered that iron overload caused apoptosis of osteocytes in early and late stages of differentiation. Notably, the expression of key proteins for iron entry was downregulated during differentiation, suggesting that mature osteocytes were less susceptible to iron toxicity due to limited iron uptake. Furthermore, iron overload also enriched a subpopulation of mature osteocytes, as indicated by increased expression of Dmp1, a gene encoding protein for bone mineralization. These iron-exposed osteocytes expressed high levels of Sost, Tnfsf11 and Fgf23 transcripts. Consistently, we demonstrated that exogenous FGF23 stimulated the formation and survival of osteoclasts, suggesting its regulatory role in bone resorption. In addition, iron overload downregulated the expression of Cx43, a gene encoding gap junction protein in the dendritic processes, and impaired YAP1 nuclear translocation in response to fluid flow in differentiated osteocytes. It can be concluded that iron overload induces cellular adaptation in differentiating osteocytes, resulting in insensitivity to mechanical stimulation and potential disruption of the balance in bone remodeling.


Assuntos
Reabsorção Óssea , Sobrecarga de Ferro , Humanos , Osteócitos/metabolismo , Mecanotransdução Celular/fisiologia , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Ferro/metabolismo , Sobrecarga de Ferro/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
17.
Sci Rep ; 13(1): 22028, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086873

RESUMO

Osteocytes form a cellular network by gap junctions between their cell processes. This network is important since intercellular communication via the network is essential for bone metabolism. However, the factors that influence the formation of this osteocyte network remain unknown. As the early stage of osteocyte network formation occurs on the bone surface, we observed a newly formed trabecular bone surface by orthogonal focused ion beam-scanning electron microscopy. The embedding late osteoblast processes tended to avoid bundled collagen fibrils and elongate into sparse collagen fibrils. Then, we examined whether the inhibition of bundling of collagen fibrils using a potent lysyl oxidase inhibitor, ß-aminopropionitrile (BAPN) changed the cellular network of the chick calvaria. The osteocyte shape of the control group was spindle-shape, while that of the BAPN group was sphere-shaped. In addition, the osteocyte processes of the control group were elongated vertically to the long axis of the cell body, whereas the osteocyte processes of the BAPN group were elongated radially. Therefore, it was suggested that the bundling of collagen fibrils influences normal osteocyte network formation during bone modeling.


Assuntos
Aminopropionitrilo , Osteócitos , Osteócitos/metabolismo , Matriz Extracelular/metabolismo , Crânio/metabolismo , Colágeno/metabolismo
18.
Sci Rep ; 13(1): 22403, 2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104230

RESUMO

Skeletogenesis and hematopoiesis are interdependent. Niches form between cells of both lineages where microenvironmental cues support specific lineage commitment. Because of the complex topography of bone marrow (BM), the identity and function of cells within specialized niches has not been fully elucidated. Dentin Matrix Protein 1 (DMP1)-Cre mice have been utilized in bone studies as mature osteoblasts and osteocytes express DMP1. DMP1 has been identified in CXCL12+ cells and an undefined CD45+ population. We crossed DMP1-Cre with Ai9 reporter mice and analyzed the tdTomato+ (tdT+) population in BM and secondary hematopoietic organs. CD45+tdT+ express myeloid markers including CD11b and are established early in ontogeny. CD45+tdT+ cells phagocytose, respond to LPS and are radioresistant. Depletion of macrophages caused a significant decrease in tdT+CD11b+ myeloid populations. A subset of CD45+tdT+ cells may be erythroid island macrophages (EIM) which are depleted after G-CSF treatment. tdT+CXCL12+ cells are in direct contact with F4/80 macrophages, express RANKL and form a niche with B220+ B cells. A population of resident cells within the thymus are tdT+ and express myeloid markers and RANKL. In conclusion, in addition to targeting osteoblast/osteocytes, DMP1-Cre labels unique cell populations of macrophage and stromal cells within BM and thymus niches and expresses key microenvironmental factors.


Assuntos
Medula Óssea , Osteoblastos , Camundongos , Animais , Osteoblastos/metabolismo , Osteócitos/metabolismo , Células Estromais , Células da Medula Óssea
19.
Proc Natl Acad Sci U S A ; 120(47): e2304492120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37976259

RESUMO

Bone regulates its mass and quality in response to diverse mechanical, hormonal, and local signals. The bone anabolic or catabolic responses to these signals are often received by osteocytes, which then coordinate the activity of osteoblasts and osteoclasts on bone surfaces. We previously established that calcium/calmodulin-dependent kinase 2 (CaMKII) is required for osteocytes to respond to some bone anabolic cues in vitro. However, a role for CaMKII in bone physiology in vivo is largely undescribed. Here, we show that conditional codeletion of the most abundant isoforms of CaMKII (delta and gamma) in mature osteoblasts and osteocytes [Ocn-cre:Camk2d/Camk2g double-knockout (dCKO)] caused severe osteopenia in both cortical and trabecular compartments by 8 wk of age. In addition to having less bone mass, dCKO bones are of worse quality, with significant deficits in mechanical properties, and a propensity to fracture. This striking skeletal phenotype is multifactorial, including diminished osteoblast activity, increased osteoclast activity, and altered phosphate homeostasis both systemically and locally. These dCKO mice exhibited decreased circulating phosphate (hypophosphatemia) and increased expression of the phosphate-regulating hormone fibroblast growth factor 23. Additionally, dCKO mice expressed less bone-derived tissue nonspecific alkaline phosphatase protein than control mice. Consistent with altered phosphate homeostasis, we observed that dCKO bones were hypo-mineralized with prominent osteoid seams, analogous to the phenotypes of mice with hypophosphatemia. Altogether, these data reveal a fundamental role for osteocyte CaMKIIδ and CaMKIIγ in the maintenance of bone mass and bone quality and link osteoblast/osteocyte CaMKII to phosphate homeostasis.


Assuntos
Cálcio , Hipofosfatemia , Camundongos , Animais , Cálcio/metabolismo , Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Osteoblastos/metabolismo , Osteócitos/metabolismo , Fosfatos/metabolismo
20.
Physiol Rep ; 11(21): e15851, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37929653

RESUMO

The intracellular infection of osteocytes represents a clinically important aspect of osteomyelitis. However, few human osteocyte in vitro models exist and the differentiation of immature osteoblasts to an osteocyte stage typically takes at least 4-weeks of culture, making the study of this process challenging and time consuming. The osteosarcoma cell line Saos-2 has proved to be a useful model of human osteoblast to mature osteocyte differentiation. Culture under osteogenic conditions in a standard normoxic (21% O2 ) atmosphere results in reproducible mineralization and acquisition of mature osteocyte markers over the expected 28-35 day culture period. In order to expedite experimental assays, we tested whether reducing available oxygen to mimic concentrations experienced by osteocytes in vivo would increase the rate of differentiation. Cells cultured under 1% O2 exhibited maximal mineral deposition by 14 days. Early (COLA1, MEPE) and mature (PHEX, DMP1, GJA1, SOST) osteocyte markers were upregulated earlier under hypoxia compared to normoxia. Cells differentiated under 1% O2 for 14 days displayed a similar ability to internalize Staphylococcus aureus as day 28 cells grown under normoxic conditions. Thus, low oxygen accelerates Saos-2 osteocyte differentiation, resulting in a useful human osteocyte-like cell model within 14 days.


Assuntos
Osteócitos , Staphylococcus aureus , Humanos , Osteócitos/metabolismo , Regulação da Expressão Gênica , Osteoblastos/metabolismo , Diferenciação Celular , Hipóxia/metabolismo , Oxigênio/metabolismo , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...